【摘要】针对传统的基于低秩表示的方法需要重新在字典矩阵上计算测试样本的表示系数,会导致计算复杂度升高,降低训练和测试样本表示系数之间的相关性等问题,提出了一种结构化局部约束低秩表示算法用于人脸识别的方法.在原始低秩表示中引入理想编码系数矩阵正则项,使训练样本的表示系数矩阵具有块对角结构;为保持数据的流形结构,引入局部约束项,使相似样本具有相似的表示系数;使用简单的线性分类器对测试样本进行分类.在AR,Extended Yale B,ORL和LFW这4个标准数据集上进行了试验结果验证.结果表明:该算法可以同时得到训练和测试样本的表示系数,对人脸图像中的遮挡、像素破坏和光照变化等具有鲁棒性.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《阅江学刊》 2015-07-02
《中国果菜》 2015-07-08
《重庆高教研究》 2015-06-26
《现代制造技术与装备》 2015-06-25
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点